翻訳と辞書
Words near each other
・ Hasta Que Salga el Sol
・ Hasta que se ponga el sol
・ Hasta Que Te Conocí
・ Hasta siempre Carlos Gardel
・ Hasta Siempre, Comandante
・ Hasta Uttanasana
・ Hasta Vinyasas
・ HASTAC
・ Hastagnostus
・ Hastain, Missouri
・ Hastak
・ Hastamalakacharya
・ Hastanectes
・ Hasseåtage
・ Hasse–Arf theorem
Hasse–Davenport relation
・ Hasse–Minkowski theorem
・ Hasse–Weil zeta function
・ Hasse–Witt matrix
・ Hassi
・ Hassi Abdallah
・ Hassi Abdallah, Algeria
・ Hassi Abdallah, Mauritania
・ Hassi Amor
・ Hassi Attilla
・ Hassi Bahbah
・ Hassi Bahbah District
・ Hassi Bel Guebour
・ Hassi Ben Abdellah
・ Hassi Ben Okba


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Hasse–Davenport relation : ウィキペディア英語版
Hasse–Davenport relation
The Hasse–Davenport relations, introduced by , are two related identities for Gauss sums, one called the Hasse–Davenport lifting relation, and the other called the Hasse–Davenport product relation. The Hasse–Davenport lifting relation is an equality in number theory relating Gauss sums over different fields. used it to calculate the zeta function of a Fermat hypersurface over a finite field, which motivated the Weil conjectures.
Gauss sums are analogues of the gamma function over finite fields, and the Hasse–Davenport product relation is the analogue of Gauss's multiplication formula
:
\Gamma(z) \; \Gamma\left(z + \frac\right) \; \Gamma\left(z + \frac\right) \cdots
\Gamma\left(z + \frac\right) =
(2 \pi)^} \; k^ \; \Gamma(kz). \,\!

In fact the Hasse–Davenport product relation follows from the analogous multiplication formula for ''p''-adic gamma functions together with the Gross–Koblitz formula of .
== Hasse–Davenport lifting relation ==
Let ''F'' be a finite field with ''q'' elements, and ''F''s be the field such that () = ''s'', that is, ''s'' is the dimension of the vector space ''F''s over ''F''.
Let \alpha be an element of F_s.
Let \chi be a multiplicative character from ''F'' to the complex numbers.
Let N_(\alpha) be the norm from F_s to F defined by
:N_(\alpha):=\alpha\cdot\alpha^q\cdots\alpha^(\alpha))
Let ψ be some nontrivial additive character of ''F'', and let
\psi' be the additive character on F_s which is the composition of \psi with the trace from ''F''s to ''F'', that is
:\psi'(\alpha):=\psi(Tr_(\alpha))
Let
:\tau(\chi,\psi)=\sum_\chi(x)\psi(x)
be the Gauss sum over ''F'', and let
\tau(\chi',\psi') be the Gauss sum over F_s.
Then the Hasse–Davenport lifting relation states that
:(-1)^s\cdot \tau(\chi,\psi)^s=-\tau(\chi',\psi').

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Hasse–Davenport relation」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.